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SUMMARY

This paper introduces a new method for the solution of the Euler and Navier–Stokes equations, which
is based on the application of a recently developed discontinuous Galerkin technique to obtain a
compact, higher-order accurate and stable solver. The method involves a weak imposition of continuity
conditions on the state variables and on inviscid and diffusive fluxes across inter-element and domain
boundaries. Within each element the field variables are approximated using polynomial expansions with
local support; therefore, this method is particularly amenable to adaptive refinements and polynomial
enrichment. Moreover, the order of spectral approximation on each element can be adaptively controlled
according to the regularity of the solution. The particular formulation on which the method is based
makes possible a consistent implementation of boundary conditions, and the approximate solutions are
locally (elementwise) conservative. The results of numerical experiments for representative benchmarks
suggest that the method is robust, capable of delivering high rates of convergence, and well suited to be
implemented in parallel computers. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A new discontinuous Galerkin technique is presented for the solution of the Euler and
Navier–Stokes equations that supports an extended set of basis functions, including piecewise
discontinuous approximations. The formulation is locally or elementwise conservative, it does
not require auxiliary 6ariables as do mixed or hybrid methods, and produces a mass matrix that
is block diagonal (uncoupled blocks) for any degree of the polynomial basis functions.

The current trend in computational fluid dynamics (CFD) is to obtain high accuracy using
reconstruction techniques [1–3] or large stencils, which are strongly dependent on the quality
of the underlying mesh [4,5]. The approach in this paper is to attain higher accuracy using
polynomial expansions within each element; this approach was introduced in References [6–9]
for scalar problems, where a priori error estimates and stability analysis are presented.

Contrasting with other techniques that use discontinuous basis functions to discretize
second-order diffusion operators and that lead to indefinite discrete approximations [10,11],
the present formulation produces positi6e definite discrete approximations to the diffusive
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terms of the governing equations, which is fundamental for time-marching algorithms and for
many iterative techniques.

The novelty of the method presented here is that it is a truly discontinuous Galerkin
technique that handles the diffusion operators without resorting to a mixed formulation. This
is very advantageous considering that for a problem in Rd, using a mixed formulation, the
number of state variables increases from (d+2) to (d2+2d+2) when the energy equation is
included, and from (d+1) to (d2+d+1) when it is not included. Most of the discontinuous
Galerkin solutions to the Navier–Stokes equations have been obtained using mixed formula-
tions; see, for example, Bassi and Rebay [12,13], Lomtev et al. [14–17], Warburton et al. [18],
and Cockburn and Shu in the development of the local discontinuous Galerkin method [19].

This paper is structured as follows. Section 2 introduces a model scalar convection–diffusion
problem with the associated notation, and in Section 3 the associated discontinuous Galerkin
approximation with a priori error estimation is presented. Then, notations for Euler and
Navier–Stokes problems are introduced in Section 4, and the space discretizations with broken
spaces in an infinite-dimensional setting are introduced in Section 5. The approximation with
polynomial basis is described in Section 6. Finally, a number of numerical experiments are
discussed in Section 7 and major conclusions of the study are collected in Section 8.

2. SCALAR CONVECTION–DIFFUSION PROBLEM

Let V be an open bounded Lipschitz domain in Rd, such as the polygonal domain in R2

depicted in Figure 1. Consider a model second-order convection diffusion problem character-
ized by the following scalar partial differential equation and boundary conditions

−9 · (A9u)+9 · (bu)+su=S, in V¦Rd (1)

u= f
(A9u) ·n=g

on GD

on GN

(2)

where b� (L�(V))d is the mass flux vector, s�L�(V), s\0 a.e. in V, S�L2(V), and
A� (L�(V))d×d is a diffusivity matrix characterized as follows:

Figure 1. Domain and boundaries—notation.
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Figure 2. Domain and boundary—notation.

A(x)=AT(x), (3)

a1aTa]aTA(x)a]a0aTa, a1]a0\0, Öa�Rd,

a.e. in V.
The boundary (V consists of disjoint parts, GD on which Dirichlet conditions are imposed,

and GN on which Neumann conditions are imposed: GDSGN=¥, GD@GN=(V, and meas
GD\0. The inflow G− and outflow G+ parts of the boundary are defined as follows:

GD±G− ={x�(V�(b ·n)(x)B0 a.e.}, G+ =(V¯G−.

2.1. Families of regular partitions

Let us first introduce regular partitions of V [20–22] (see Figure 2). Let P={Ph(V)}h\0 be
a family of regular partitions of V¦Rd into N¬N(Ph) subdomains Ve, such that for Ph�P,

V( = .
N(Ph )

e=1

V( e and VeSVf=¥ for e" f. (4)

Let us define the inter-element boundary by

Gint= .
Vf, Ve�Ph

((VfS(Ve). (5)

On Gint, we define n=ne on ((VeS(Vf)¦Gint for indices e and f such that e\ f.

2.2. Broken spaces

We define the so-called broken spaces on the partition Ph(V):

Hm(Ph)={6�L2(V): 6 �Ve
�Hm(Ve) ÖVe�Ph(V)}, (6)

if 6�Hm(Ve), the extension of 6 to the boundary (Ve, indicated by the trace operation g06, is
such that g06�Hm−1/2((Ve), m]1/2. The trace of the normal derivative g16�Hm−3/2((Ve),
m\3/2, which will be written as 96 ·n �(Ve

, is interpreted as a generalized flux at the element
boundary (Ve.

With this notation, for 6 �Ve
�H3/2+e(Ve) and 6 �Vf

�H3/2+e(Vf), we introduce the jump
operator [ · ] defined on Gef=V( eSV( f"¥ as follows:

[6 ]= (g06)�(VeSGef
− (g06)�(VfSGef

, e\ f, (7)

and the a6erage operator � · � for the normal flux is defined for (A96) ·n�L2(Gef) as
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�(A96) ·n�=
1
2

(((A96) ·n)�(VeSGef
+ ((A96) ·n)�(VfSGef

), e\ f, (8)

where A is the diffusivity. Note that n represents the outward normal of the element with
higher index.

3. THE DISCONTINUOUS GALERKIN METHOD

The discontinuous Galerkin formulation for convection–diffusion problems is built as an
extension of the classical discontinuous Galerkin method for hyperbolic problems [23–31],
with the diffusion operators treated as in [7–9]. Here we review definitions and formulations
presented in [8].

3.1. Weak formulation

Let W(Ph) be the Hilbert space on the partition Ph defined as the completion of H3/2+e(Ph)
under the norm 
 · 
W defined as follows (induced by (14)):


u
W
2 =
u
V

2 +
u
b
2 +
us1/2
0,V

2 , (9)


6
V
2 = %

Ve�Ph

&
Ve

96 ·A96 dx+ �6 �0,GPh

2 , (10)


u
b
2 = �u �b �1/2�0,V

2 + %
Ve�Ph

�9u ·b/�b �1/2�0,Ve

2 + �u �b ·n �1/2�0,G+

2 + �hau− �b ·n �1/2�0,Gint

2

+ �h−a[u ]�b ·n �1/2�0,Gint

2 , (11)

�6 �0,GPh

2 = �h−a6 �0,GD

2 + �ha(A96) ·n �0,GD

2 + �h−a[6 ]�0,Gint

2 + �ha�(A96) ·n��0,Gint

2 , (12)

and

�6 �0,G
2 =

&
G
62 ds, for G�{GD, GN, Gint}.

The terms h9a, with a=1/2, are introduced to minimize the mesh-dependence of an otherwise
mesh-dependent norm. In (12), the value of h is he/(2a1) on GD, and the average (he+hf)/(2a1)
on that part of Gint shared by two generic elements Ve and Vf, the constant a1 being defined
in (3). In (11), however, h is he/2 on GD, and the average (he+hf)/2 on (VeS(Vf.

A consistent formulation of the problem in (1) and (2) is the following variational statement:

Find u�W(Ph) such that B(u, 6)=L(6) Ö6�W(Ph) (13)

where

B(u, 6)= %
Ve�Ph

!&
Ve

[96 ·A9u− (96 ·b)u+6su ] dx+
&
(Ve¯G−

6u−(b ·ne) ds
"

+
&

GD

((A96) ·nu−6(A9u) ·n) ds+
&

Gint

(�(A96) ·n�[u ]−�(A9u) ·n�[6 ]) ds,

(14)

u9= lim
e�0

u(x9eb), for x�Gint,

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 79–95 (1999)
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and

L(6)= %
Ve�Ph

&
Ve

6S dx+
&

GD

(A96) ·nf ds+
&

GN

6g ds−
&

G−

6f(b ·n) ds. (15)

Remark
Note that H0

1(V)¦W(Ph). Indeed, for u, 6�H0
1(V), the bilinear and linear forms B(u, 6) and

L(6) reduce to those of the continuous Galerkin formulation, which is known to be unstable
for not well-resolved convection-dominated problems. The use of discontinuous basis functions
in combination with (14) and (15), however, produces a method with superior stability
properties. It is proven in Reference [8] that the formulation presented is globally and locally
(elementwise) conservative.

3.2. Polynomial approximations on partitions

For future reference, we record a local approximation property of polynomial finite element
approximations. Let V. be a regular master element in Rd, and let {FVe

} be a family of
invertible maps from V. onto Ve (see Figure 3). For every element Ve�Ph, the finite-
dimensional space of real-valued shape functions P. ¦Hm(V. ) is the space Ppe

(V. ) of polynomials
of degree 5pe defined on V. . Then we define

Ppe
(Ve)={c �c=c. $FVe

−1, c. �P. =Ppe
(V. )}. (16)

Using the spaces Ppe
(Ve), we can define

Wp(Ph)= 5
N(Ph )

e=1

Ppe
(Ve), (17)

N(Ph) being the number of elements in Ph.
The approximation properties of Wp(Ph) will be estimated using standard local approxima-

tion estimates (see [32]). Let u�Hs(Ve); there exists a constant C depending on s and on the

Figure 3. Mappings V. �Ve and discontinuous approximation.
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angle condition of Ve, but independent of u, he=diam(Ve), and pe, and a polynomial up of
degree pe, such that for any 05r5s, the following estimate holds:


u−up
r,Ve
5C

he
m−r

pe
s−r 
u
s,Ve

, s]0, (18)

where 
 · 
r,Ve
denotes the usual Sobolev norm, and m=min(pe+1, s).

3.3. Discontinuous Galerkin approximation

The variational formulation of the discontinuous Galerkin method (13) will be used as a
basis to construct approximations to the exact solution in a finite-dimensional space. The
variational formulation in the space Wp(Ph) is the following:

Find uDG�Wp(Ph) such that B(uDG, 6h)=L(6h) Ö6h�Wp(Ph) (19)

where B( . , . ) and L( · ) are defined in (14) and (15) respectively.
Note that all the properties of the discontinuous Galerkin method (13) also hold for the

finite-dimensional approximation (19); namely, solutions are elementwise conservative, mass
matrices are block diagonal, and the space of discontinuous functions provides the basis to
obtain solutions with potentially good stability properties.

One of the most important characteristics of a method for the solution of convection–
diffusion problems is that of stability. The following section addresses this issue and provides
an a priori error estimation to solutions of (19).

3.4. A priori error estimation

Let us first define the norm 
 · 
W 1
which is used in the error estimate:


u
W 1

2 =
u
V 1

2 +
u
b 1

2 , (20)


u
V 1

2 = �u �0,Ph

2 + �hau �0,GD@GN

2 + �hda1
−1(A9u) ·n �0,GD

2 + �ha[u ]�0,Gint

2 + �hda1
−1�(A9u) ·n��0,Gint

2

+ �ha�u��0,Gint

2 , (21)

�u �0,Ph

2 = %
Ve�Ph

&
Ve

u2 dx, �6 �0,G
2 =

&
G
62 ds, for G�{GD, GN, Gint},

and


u
b 1

2 = �hau+ �0,G−

2 + �ha[u ]�0,Gint

2 +
hub
0,V
2 , (22)

with a=1/2, d=3/2 and ub= �b �−1(9u ·b) when �b �\0, otherwise ub=0. In 
 · 
Vj
and 
 · 
bj

,
the scaling parameter h is he/2 on (VeS(V, and the average (he+hf)/2 on (VeS(Vf.

Solutions to convection–diffusion problems can exhibit features that range from those of
diffusion-dominated problems to those of pure convection problems. The error of diffusion-
dominated problems is better measured in the H1-norm because the associated physics depends
on the solution gradient, such as heat transfer, viscous stresses, etc.; whereas the error in
convection-dominated transport is better measured in the L2-norm because the underlying
physics depends almost exclusively on the solution values rather than on its gradient.

The range [0, 1) of local Peclet numbers (Pe) represents a class of problems in which
diffusion effects are dominant, and for which the W-norm converges to the V-norm as Pe�0.
The analysis of stability in the V-norm for diffusion dominated problems was presented in
[7,9], where optimal h-convergence rates are presented.
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For high Pe, where convection is important, the following a priori error estimate applies (see
[8]). It is assumed that the reaction coefficient s=0, which is the worst case scenario from the
point of view of stability.

Theorem 3.1
Let the solution to (13) be u�Hs(Ph(V)), with s\3/2, and assume that there exists k]0 and
Cp\0 such that

inf
u�W 1


u
W 1
=1

sup
6�W 1


6
W 1
51

�B(u, 6)�]Cppmax
−k , (23)

where pmax=maxe(pe). If the approximation estimate (18) holds for the spaces Wp(Ph), then
the error of the approximate solution uDG is bounded as follows:


u−uDG
W 1

2 5Cpmax
2k %

Ve�Ph

� he
me−e

pe
s− (3/2)−e


u
s,Ve

�2

, (24)

where me=min(pe+1, s), e�0+, and the constant C depends on s and on the angle condition
of the element, but it is independent of u, he and pe.

A proof of this result can be found in [8].

Remark
Numerical experiments presented in [8] indicate that kB1.5.

4. EULER AND NAVIER–STOKES PROBLEMS

First we introduce a model problem and related notations in preparation for developing and
analyzing the discontinuous Galerkin formulation.

Let V be a bounded Lipschitz domain in Rd. The governing equations for the conservation
of mass, momentum and energy can be written in vector form as follows:

(U
(t

+
(F i

(xi

=
(F i
6

(xi

+S,

U(x, 0)=U0(x),

in V

at t=0

(25)

where repeated indices are summed throughout their range, U= (u1, . . . , um)=U(x, t)�Rm is
a vector of conservation variables with m=d+1 or d+2 when the energy equation is
included, Fi(U)= ( f1i, . . . , fmi)�Rm and F i

6(U)= ( f1i
6 , . . . , fmi

6 )�Rm are the inviscid and diffu-
sive flux vectors associated with the ith space co-ordinate, and S represents the body forces in
the momentum equations and a source of heat (e.g. heat source due to viscous dissipation) in
the energy equation. The system of equations (25) is accompanied by appropriate boundary
conditions for each problem.

4.1. In6iscid and 6iscous flux 6ectors

The inviscid flux vectors Fi are homogeneous functions of degree 1 in the conservative
variables U ; therefore, the fluxes can be written as Fi=Ai(U)U, where Ai(U) is the Jacobian
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matrix. Let Fn(U) be the normal flux at any point on a boundary (V with outward normal n ;
then

Fn=Fini, i� [1, . . . , d ],

An(U)=
(Fn(U)
(U

=Ai(U)ni, An(U)�Rm×Rm.

The flux vector Fn(U) can be split into inflow and outflow components Fn
+ and Fn

−; for
example

Fn
9(U)=RL9R−1U, L9=

1
2

(L9 �L�),

where L is the diagonal matrix of eigenvalues of An, and the columns of the matrix R are the
corresponding eigenvectors. From a physical point of view, Fn

+ and Fn
− represent the fluxes of

mass, momentum and energy leaving (+ ) and entering (− ) the domain through (V.
Given that the approximation of field variables may be discontinuous across internal

surfaces in V or across (V, let us define

U9= lim
e�0+

U(x9en),

where x is a point at a boundary that can be real (e.g. bounding walls) or artificial (e.g.
inter-element, far-field). With this notation, Fn

+(U−) is the flux in the direction n, and
Fn

−(U+) is that in the opposite direction.
The projection of the viscous flux vectors F i

6 onto the normal n to a boundary is a linear
functional of U, and will be written in the following alternative forms

F i
6ni=Fn

6=DnU,

where for Newtonian flows, the matrix Dn is a linear differential operator.

5. SPACE DISCRETIZATION WITH BROKEN SPACES

For a partition Ph in this family, we introduce a broken space V(Ph) of admissible vectors of
conservation variables U=U(x) as follows:

V(Ph)={U : 9U1 ·(F 6(U2)−F(U2))�L1(Ve);

U1 ·(Fne

+(U2
−)+Fne

−(U3
+))�L1((Ve);

U1 ·Dn
TU2�L1((Ve); U1 ·Fn

6(U2)�L1((Ve);

Ö{U1, U2, U3}�V(Ph), ÖVe�Ph(V)}.

For a given initial condition data U0, and appropriate boundary conditions, the space
discretization using the discontinuous Galerkin method can be stated as follows:
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Given U0=U0(x), for t� (0, T), find

U( . , t)�V(Ph)×H1(0, T) such that U(x, 0)=U0(x), and&
V

WT (U
(t

dx+ %
Ve�Ph

&
(Ve

WT(Fne

+(U−)+Fne

−(U+)) ds

+
&

Gint

(�WTDn
T�[U ]− [WT]�Fn

6�) ds+
&

GD

(WTDn
TU−WTFn

6) ds

+ %
Ve�Ph

&
(Ve

(WT

(xi

(F i
6−Fi) dx

(26)

−
&

V
WTS dx+

&
GD

WTDn
TU. ds+

&
GN

WTF. n
6 ds, ÖW�V(Ph)

where

Fne
(U)=Fi(U)nei

, U9= lim
e�0+

U(x9ene), Fn
6(U)=F i

6(U)ni, Fn
6(U)=DnU.

Fn
9 are known in closed form for the usual flux vector and flux difference splittings (see [7] and

references therein).
It is important to observe that (26) reduces to the classical weak Galerkin approximation if

we restrict V(Ph) to a space of continuous functions.
We now prove that (26) renders a conser6ati6e formulation. To show that (26) is globally

conser6ati6e, let us pick a test function W= (61, . . . , 6m) such that

6i(x)=1, i=1, . . . , m Öx�V,

by definition W�V(Ph). Substituting W in (26), we get&
V

(U
(t

dx+ %
Ve�Ph

&
(Ve

(Fne

+(U−)+Fne

−(U+)) ds−
&

GD

Fn
6 ds=

&
V

S dx+
&

GN

F. n
6 ds. (27)

For any pair of adjoining elements (Ve, Vf), the following identities hold:

Fne

+(U−)= −Fnf

−(U+) and Fne

−(U+)= −Fnf

+(U−).

Substituting the above identities in (27), we obtain&
V

(U
(t

dx+
&
(V

(Fn
+(U−)+Fn

−(U+)) ds=
&

V
S dx+

&
GN

F. n
6 ds+

&
GD

Fn
6 ds, (28)

which shows that the formulation is globally conservative.
To show that the formulation is also locally conser6ati6e, we select a generic weighting

function

W= (61, . . . , 6m)�V(Ph) such that 6i(x)=
!1

0
x�Ve

xQVe
, i=1, . . . , m,

and substituting W in (26), we get&
Ve

(U
(t

dx+
&
(Ve

(Fne

+(U−)+Fne

−(U+)) ds

=
&

Ve

S dx+
&
(VeSGN

F. n
6+

&
(VeSGD

Fn
6 ds+

&
(VeSGint

�Fn
6� ds,
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which represents the conservation equations at element level when the inter-element viscous
forces are taken as the average �Fn

6�.

5.1. Equi6alence of the weak formulation

In this section we prove that any solution to problem (25) with appropriate boundary
conditions is also a solution to the variational problem (26).

Assuming that the fluxes F i
6 and Fi are differentiable within each element of the partition, we

rewrite the summations on the left-hand-side of (26) as follows:

%
Ve�Ph

&
Ve

(WT

(xi

(F i
6−Fi) dx

= − %
Ve�Ph

&
Ve

WT�(F i
6

(xi

−
(Fi

(xi

�
dx+

&
(V

WT(Fn
6−Fn) ds+

&
Gint

[WT(Fn
6−Fn)] ds

and

%
Ve�Pp

&
(Ve

WT(Fne

+(U−)+Fne

−(U+)) dx

=
&
(V

WT(Fn
+(U−)+Fn

−(U+)) ds+
&

Gint

[WT](Fn
+(U−)+Fn

−(U+)) ds.

Substituting the above expressions in (26), we obtain&
(V

WT(Fn
+(U−)+Fn

−(U+)−Fn) ds+
&

GD

WTDn
T(U−U. ) ds+

&
GN

WT(Fn
6−F. n

6) ds

+
&

Gint

�WTDn
T�[U ] ds+

&
Gint

{[WT](Fn
+(U−)+Fn

−(U+)−�Fn�)−�WT�[Fn−Fn
6]} ds

+ %
Ve�Ph

&
Ve

WT�(U
(t

+
(Fi

(xi

−
(F i
6

(xi

−S
�

dx=0, ÖW�V(Ph),

which shows that any sufficiently smooth solution to the model problem (25) with appropriate
boundary conditions satisfies (26).

6. APPROXIMATION WITH POLYNOMIAL BASIS

For every element Ve�Ph, the finite-dimensional space of real-valued shape functions is taken
to be the space Ppe

(V. ) of polynomials of degree 5pe defined on its master element V. . Then
we define

Ppe
(Ve)={c �c=c. $FVe

−1, c. �P. =Ppe
(V. )}, (29)

where FVe
is an invertible mapping from the master element V. onto Ve.

Let Vp(Ph) be the following finite-dimensional subspace of V(Ph):

Vp(Ph)=
� 5

N(Ph )

e=1

Ppe
(Ve)

�m

¦V(Ph),

and let the time domain be subject to a family of partitions:

Pt(t0, tN)={(ti, ti+1), tiB ti+1, 05 i5N−1}.
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Then, a space–time discretization of the Navier–Stokes equations with piecewise constant
approximation in time can be stated as follows:

Given U0=U0(x), find Uh�Vp(Ph)×V0(Pt), such that

(tn+1− tn)−1 %
Ve�Ph

&
Ve

Wh
T(Uh(tn+1)−Uh(tn)) dx

+ %
Ve�Ph

&
(Ve

Wh
T(Fne

+(Uh
−(tn))+Fne

−(Uh
+(tn))) ds

+
&

Gint

(�Wh
TDn

T�[Uh(tn)]− [Wh
T]�Fn

6(tn)�) ds+
&

GD

(Wh
TDn

TUh−Wh
TFn
6) ds (30)

+ %
Ve�Ph

&
(Ve

(Wh
T

(xi

(F i
6−Fi)(tn) dx

= %
Ve�Ph

&
Ve

Wh
TS(tn) dx+

&
GD

Wh
TDn

TU. (tn) ds+
&

GN

Wh
TF. n
6(tn) ds

ÖWh�Vp(Ph), 05n5N−1

This discretization is only first-order-accurate in time, it is used to converge to steady solutions
of the Navier–Stokes equations.

Regarding the space Vp(Ph), analytical stability studies and numerical experiments presented
in [6,7,9] indicate that the order of polynomial approximation should be pe]2 ÖVe�Ph(V).

6.1. Algorithm for steady state computations

Let the restriction of the state vector Uh to any given element Ve be written as

Uh(x, t)�Ve
=We(x)ue(t),

where We is a matrix of local shape functions of dimension m× (Ppe
(Ve))m, and ue is the vector

of element degrees of freedom of dimension (Ppe
(Ve))m. Then, the algebraic system of

equations (30) can be written in matrix form as follows:

Mdu=dt(Sn−N(Un)) (31)

where

du=un+1−un, dt= tn+1− tn, M= %
Ve�Ph

&
Ve

W e
TWe dx,

Sn= %
Ve�Ph

&
Ve

W e
TS(tn) dx+

&
GD

WTDn
TU. (tn) ds+

&
GN

WTF. n
6(tn) ds,

N(Un)= %
Ve�Ph

&
(Ve

W e
T(Fne

+(Uh
−(tn))+Fne

−(Uh
+(tn))) ds

+
&

Gint

(�WTDn
T�[Uh(tn)]− [WT]�Fn

6(tn)�) ds+
&

GD

(WTDn
TUh−WTFn

6) ds

+ %
Ve�Ph

&
Ve

(W e
T

(xi

(F i
6−Fi)(tn) dx,
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where W is a matrix of dimension m×dim(Vp(Ph)), the mass matrix has dimensions
dim(Vp(Ph))×dim(Vp(Ph)), whereas du, Sn and N(Un) are vectors of dimension dim(Vp(Ph)).

Given that M is a block diagonal matrix with uncoupled blocks, each block having
dimensions (dim(Ppe

(Ve)))m× (dim(Ppe
(Ve)))m, the system of equations (31) can be solved

element by element as follows:

M edue=dt(S e
n−Ne(Un)),

u e
n+1=u e

n+due

(32)

where S e
n and Ne(Un) are the components of Sn and N(Un) associated with the test functions

We, which have local support on Ve.
The maximum allowable time step dt associated with an explicit time-marching scheme as

(32) is limited by a CFL condition where convection is dominant, and a time step of order h2

where diffusion effects are dominant. To ameliorate this limitation on the time step, it is
advisable to utilize an elementwise point-implicit scheme.

6.2. Elementwise point-implicit scheme

The point-implicit scheme is obtained by linearizing all those equations coming from weight
functions We whose support is the domain of a given element Ve, with respect to all the degrees
of freedom ue associated with the same element.

Using (30) with local linearization at element level, we get the following time-marching
scheme:

� 1
dt

M e−
(S e

n

(ue

+
(N e

n

(ue

�
due= (S e

n−Ne(Un))

u e
n+1=u e

n+ue

(33)

where

(Ne

(ue

=
&
(Ve

W e
TAne

+(U e
−)We ds+

&
(VeS (Gint@GD)

W e
T(Dn

T−Dn)We dx

+
&

Ve

(W e
T

(xi

(Di−Ai)(Ue)We dx,

(S e
n

(ue

=
&

Ve

W e
T (S
(Ue

(Un)We dx,

and Me, S e
n and Ne are the same as in (32).

It is important to note that the scheme is applied element by element. For steady state
calculations, the changes due are used to update ue and to compute the residual of other
elements as soon as due is obtained. In a Gauss–Seidel fashion, this updating accelerates the
convergence to the steady state.

For time-dependent problems, an explicit multi-step Runge–Kutta scheme can be applied.
The number of explicit steps depends on accuracy and on stability considerations.
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Figure 4. Pressure coefficient along the windward and leeward centerlines.

7. NUMERICAL EXPERIMENTS

The first test case is a standard benchmark for the solution of the Euler equations: reflection
and interaction of oblique shock waves. The test consists of a cascade with an aspect ratio of
4% and M�=1.40. Plate 1 shows the final mesh and the Mach number distribution, and Plate
2 shows the pressure distribution. A comparison with finite difference solutions obtained with
finer grids reveals that the same quality of solution is obtained using the DG approximation
with significantly fewer elements.

The next test case is the simulation of inviscid flow around the shuttle orbiter at M�=7.40
and attack angle 40°. The objective of this simulation is to compare the pressure coefficient
from wind tunnel experiments [33] and the values obtained using numerical simulation. The
perfect gas model is used in the computations, since high-temperature effects were not present
in the wind tunnel experiment.

Given that the geometry of the aft section of the vehicle has been simplified, the compari-
sons with wind tunnel data should be made only forward of the elevon hinge-line. This
simplification is justified because the flow in the aft region is predominantly supersonic;
consequently, the modeling of the geometry past the elevon hinge-line has negligible upstream
influence.

The solution is obtained using mesh sequencing, starting with a grid of 25×42×37 linear
elements, executing the final iterations on a grid of 50×84×74 linear elements.

Plate 3 shows the streamline pattern and Plate 4 the Mach number distribution at two
normal planes. A comparison between the pressure coefficient from wind tunnel experiments
[33] and the values obtained using numerical simulation is shown in Figure 4 for the centerline,
and in Figure 5 for a cross-section station z/L=0.6 (from nose to tail). The latter figure shows
the pressure coefficient as a function of the angle around the body.
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These numerical results indicate that the dominant inviscid flow features are well-predicted
on the windward and leeside of the Shuttle Orbiter at a high angle of attack. As expected, the
aft portion of the vehicle is not well-modeled past z/L=0.8 due to the geometric simplifica-
tions introduced in the mesh past the elevon hinge-line.

Solutions to the incompressible Navier–Stokes equations are obtained using the artificial
compressibility technique. The energy equation is not included, and the system is closed with
a barotropic model p=c2(r−r0), where c2 is a positive constant chosen so that c2�Vmax

2

(velocity modulus squared), and r0 is a reference density. The continuity equation

(r

(t
+b

(

(xi

(rui)=0

includes the artificial compressibility parameter b� (0, 1]. Using b, the inviscid pressure waves
have the following velocities:

V9
V2+b(c2−V2), V2= %
d

i=1

ui
2.

The test cases selected are two widely used benchmarks for laminar viscous flows, the driven
cavity problem at Re 3200 and 7500 as described in [34].

The solutions are obtained with a mesh of quadratic elements, which is equivalent (in
number of degrees of freedom) to a mesh of 60×60 linear elements (used for plotting results)
as shown in Plate 5, this figure also shows the pressure distribution on the background. Note
that the pressure range shown is considerably narrower than the actual range, which is very
wide because of the presence of singularities at the top corners of the cavity. The cut-off values

Figure 5. Pressure coefficient at the fuselage station Z/L=0.6.
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Figure 6. Comparison of horizontal velocity through the middle vertical plane.

[pmin, pmax] applied to the range of pressure allow to observe small changes within the domain,
excluding the areas adjacent to the top corners. Plate 6 shows the streamline pattern.

A comparison with high resolution values (Re 3200 case) reported in [34] for the horizontal
velocity at the middle vertical plane is shown in Figure 6 and a comparison of vertical velocity
at the middle horizontal plane is shown in Figure 7. These comparisons indicate that highly
accurate velocity profiles can be obtained with a very coarse mesh using the present
formulation.

8. CONCLUSIONS

A new discontinuous Galerkin technique for the solution of the Euler and Navier–Stokes
equations is developed as an extension of the method presented in [8,9]. The formulation is
compact with elementwise discontinuous basis functions, is locally or elementwise conservative,
does not require auxiliary variables as mixed methods, and produces a mass matrix that is
block diagonal (uncoupled blocks) for any degree of the polynomial basis functions. For
diffusion-dominated problems, the order of the local polynomial approximations should be
greater or equal to 2.

The structure of this discontinuous Galerkin method, particularly the fact that the degrees
of freedom of an individual element are coupled only with those of neighbors sharing a
boundary, suggest that the method is easily parallelizable. Parallel algorithms based on the
method are the subject of future research.

A stability analysis and a priori error estimates are developed for the scalar case in [8,9], and
numerical evidence presented in the previous section suggests that this formulation is highly
reliable for obtaining numerical solutions to problems characterized by a wide range of fluid
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Figure 7. Comparison of vertical velocity through the middle horizontal plane.

flow conditions. Remarkably, this formulation is stable even when the flow field is not
well-resolved, and does not produce the classical oscillations near sharp gradients (e.g.
boundary layers), which are characteristic in classical H1 approximations of underresolved
boundary layers.
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Plate 1. Cascade, aspect ratio 4%, M�=1.40, mesh and Mach number.

Plate 2. Cascade, aspect ratio 4%, M�=1.40, pressure.
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Plate 3. Shuttle Orbiter, M�=7.4, incidence 40.0°, streamlines.

Plate 4. Shuttle Orbiter, M�=7.4, incidence 40.0°, Mach number.
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Plate 5. Driven cavity at Re=7500: mesh and pressure contours.

Plate 6. Driven cavity at Re=7500: pressure contours and streamlines.
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